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ABSTRACT

The statistical properties of the second-order Froude-Krylov force on a cylinder (whether a vertical cylinder or a horizontal submerged
cylinder), for narrow-band spectra, are investigated. For this purpose two families of stochastic processes are defined and for each family
the probability density function and the probabilities of exceedance of the absolute maximum and of the absolute minimum are obtained. It
isthen proven that the above-mentioned Froude-Krylov force processes belong to these stochastic families.

Thepredictionsfor the Froude-Krylov force on a horizontal submerged cylinder agreewith theresults of a small-scalefield experiment.

KEY WORDS: Wind-generated waves. Froude-Krylov force. Non-
linearity effects. Probability of exceedance of the absolute maximum.
Probability of exceedance of the absolute minimum. Vertical cylinder.
Horizontal submerged cylinder.

INTRODUCTION

The amplitude of the wave force on a large structure may be
obtained as the product of the Froude-Krylov force (which is defined
as the force on the eguivaent water volume) and the diffraction
coefficient of the wave force (Sarpkaya and Isaacson, 1981).
Therefore it is helpful for the design of large offshore structures to
investigate the properties of the Froude-Krylov force.

According to the linear theory of wind-generated waves (Longuet-
Higgins, 1963; Phillips, 1967) the linear Froude-Krylov force, whether
on a vertica cylinder or on a horizontal submerged cylinder,
represents a random Gaussian process of time. Therefore both the
absolute maximum and the absolute minimum of the linear Froude-
Krylov force have the same Rayleigh distribution, if the spectrum is
very narrow (Longuet-Higgins, 1952).

Boccotti (2000) has shown that, for large horizonta cylinders, the two
random processes wave force on the solid cylinder, and Froude-Krylov
wave force have nearly the same very narrow spectrum, the same non-
linearity effects, and the same statistical properties: equal distribution
of the normalized crest-to-trough heights, distribution of the
normalized absolute maximum and distribution of the normalized
absolute minimum. This conclusion is based on the evidence of a
small-scale field experiment which consisted in the red time
comparison of the wave forces on a horizontal submerged cylinder and
on an idea equivaent water cylinder (see also Boccotti, 1996 and
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Arenag, 2002).

The datistics of non-linear wave forces was studied by Naess and
Johnsen (1992), which proposed a numerica approach for calculating
the probability density function of the second order hydrodynamic
loads and response of compliant offshore structures.

In this paper an analytical formulation is proposed for narrow-
band wind-generated wave processes (Tayfun, 1980), including the
non-linear Froude-Krylov forces. In detail we define two families of
non-linear stochastic processes y; and w,: the first consisting of
statistically symmetric processes, the second consisting of statistically
non-symmetric processes. For each family of random processes we
obtain the probability density function, the probability of exceedance
of the absolute maximum and the probability of exceedance of the
absolute minimum. For the family 4 these properties depend upon

one parameter ¢, for the family w, they depend upon two
parameters oy and ;.

We prove that the horizontal component of the narrow-band
second-order Froude-Krylov force (whether on a vertical cylinder or
on a horizontal submerged cylinder) represents a random process of
time which belongs to the stochastic family 4 , and the expression of

parameter ¢ is derived for this process. We prove also that the
vertical component of the narrow-band second-order Froude-Krylov
force (on a horizontal submerged cylinder) represents a random
process of time, which belongs to the stochastic family y, and the
expressions of parameters o4 and o, are obtained for this process.

Finaly, we show that the analytical predictions for the Froude-
Krylov force on a horizontal submerged cylinder agree with the
conclusions of Boccotti (2000) based on experimental evidence.
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STATISTICAL PROPERTIES OF TWO STOCHASTIC
FAMILIESWITH NARROW-BAND SPECTRUM

Let us define the two families of stochastic processes of time:
ya(t) = hasin[z (O] + g sin[2¢ (1)1, (@

v(t) = foacos 7 (V)] + gpa’ cos? x(t) ] + hpalsin (1)1 @
where a isa Rayleigh distributed random variable, f,, g;, f>, 05,
h, are parameters with some fixed values and where y(t) =wt+g¢,

with w the angular frequency and @ a random phase uniformly
distributed in (0,27) .

The Probability Density Functions of the Stochastic Family y;

Let us consider the normalized random process

Gi=W1-w)loy, (©)]
where y; and Oy, A€, respectively, the mean value and the standard
deviation of random process y; . Defining the two Gaussian random
processes of time

Zc(t) =acosy(t)l/o, Zs(t) =asn[y(t)]/c 4
where ¢ isthe standard deviation of the linear process asin[y(t)],
the normalized process {1 may be rewritten as

G =vZs+(8IV)ZZs (5)
where

- 1/ Vi+6%/a  s=2g.0/|t, 6)
given that
v =0, 0,/2,1:02(1‘12+02912). ©)

The third and fourth moments of the family ¢, are given respectively
by:

B0, G=3+1852+9(5/v)>. ®)
The fact the third moment is zero, suggests that ¢; is a symmetric
process. To show this symmetry the probability density function of ¢

is derived. Firstly, by using Laplace transform technique, we evaluate
the characteristic function of the process ¢, which is defined as the

mean value of e @41 :

- 2 2
0l _ 15 0w
e 1_exp{—2a) [1—‘/ +a)252/V

1/,/v +@?52Iv? . (9

The probability density function of ¢, which is obtained by inverse

Fourier transform of €' ¢ (Eq. 9), isgiven by:

()= +°° e P 2 V2 +@?8% Iv? g 10
; J‘CO g ) .
' 5 \/V2+a)252/1/2

Note that this probability density function is symmetric with respect to
¢ =0, which means that the random process ¢; is statistically

symmetric. Note also that the probability density function fé“l (Eq.
10) of the normalized random variable ¢ approaches the probability
density function of the normalized Gaussian variable, as o6
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approaches zero. Fig. 1 comparesthe f, for two valuesof & and the

probability density function of the normalized Gaussian random
variable.

The Probability Density Functions of the Stochastic Family y,

Let us consider the normalized random process
{o=W2-vr)loy, (11)

where y, and o, are, respectively, the mean value and the standard

w2
deviation of random process i, . As function of the processes Z. and

Zs (seeEq. 4), the process ¢, may be written as

& =ﬂ( Ze+ay 22 +ay Z§)—,B(a1+a2), (12
where
h 1
0(126%, azzaf—z, f=—m— (13)
| 2| | 2| \11+2(a12+a§)

The family ¢, is generally non-symmetric and its statistical properties

have been deeply investigated by Arena & Fedele (2002), that derived
the analytical expression of the probability density function fg,

(obtained by applying the inverse Fourier transform to the
characteristic function €52 ). Itisgiven by:

I P I S )5
¢ ——j gexp{ 21+4(wﬂa1)}-

—oo

expy—iof| o+« +m a4
| p{ ﬂ{(l 2) 1+4(a)ﬂ0!1)2ﬂ "

\/ 1- 4(a),8 )Zalaz -2 a)ﬂ(al + 0{2)
Let us observe that if the parameters o4 ,a» approach zero, the non-
linearity vanishes and the probability density function of ¢, (Eq. 14)

tends to the Gaussian distribution. Fig. 2 shows the probability density
function f, (Eq. 14), for fixed values of (o, ). If the parameters

oy, approach zero, the non-linear effects vanish, and each process

¢ belonging to the stochastic family (2), has to converge in
probability to a Gaussian process.

04 fa
|5 =015
03 |
0.2 \— 15] =005
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Fig. 1 Comparison between the probability density functions fo (Eq.
10), for fixed values of &, and the normalized Gaussian (dotted line).
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The Probabilities of Exceedance of the Absolute Maximum and of
the Absolute Minimum of the Stochastic Family 4

Being the family y; (EQ. 1) symmetric, the distribution of the
absolute maximum is equal to the distribution of the absolute
minimum. Therefore we derive only the probability of exceedance of
the absolute maximum.

If we rewrite the normalized process ¢; (Eq. 5) as

va 16(a)’
G =—sin(x)+ —(—j sin(2y) (15
o 2vio
the first derivative d¢;/d y vanishesif
2ﬂcosz;(+cos;(—,u:0 (16)
where
= sal(v?o) . a7)

In the following we anayze the roots of Eq. 16 in the domain of the
parameter u . If 14— 0 the effects of non-linearity are negligible and
Eq. 16 reduces itself to cosy=0: the abstissa y=x/2 of the
maximum vaueis equa to the maximum abscissa for the linear process
g1 =(valo)sin(y) . If x4 — e the non-linearity is predominant and
Eq. 16 reduces itsdf to cos? ¥ =1/2: the abscissa of the maximum
vadueis y=x/4. Forfinite u , the abscissa of the maximum is within
zl4 and /2 and Eq. 16 issatified if

4u
COS Y max = ———F7——,
1+41+ 32,u2

If we assume weak non-linear effects (that is u<<1), for a fixed
valueof a/o, EQ. 18 may be expanded in Taylor series as

SN e > 0. (18)

SN e =1- 20 (19)

Substitution of expressions 19 in Eqg. 15, after some algebra, by
retaining only the lower order terms, gives us the approximate
expression for the maximum

52
Clmax=§1(lmax)5‘/u+ﬁu3- (20

Successive approximations procedure yields the following expressions
for ug such that Eq. 20 is satisfied

COS ¥ max = 2U —16,u2

2
Upz=—"2——— . 21
0= T $lmex (21)

Finaly, having the variable u the Rayleigh distribution [that is

P(uzz):exp(—22/2)], the probability of exceedance for the
absolute maximum has expression

2 2
i > )= —%4{%—5 42] . @)

7

This probability of exceedance, for fixed valuesof ¢, isshown in Fig.
3. Let us note that the deviation from the Rayleigh distribution is weak
for |0 0.05.

The Probabilities of Exceedance of the Absolute M aximum and of
the Absolute Minimum of the Stochastic Family w»
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Supposing that f, >0, from Eq. 2 we obtain the amplitudes of the
absolute maximum and of the absolute minimum (in absolute value),

which are given respectively by:
high = f2(x Y)a+ ga(x y)a?, o = fa(x y)a-ga(x y)a®.  (23)
Arenaand Fedele (2002) showed that if the condition
f
| 2(%, y] -
|92(x,y)-ha(x y)a/2
is satisfied, the probabilities of exceedance P((pma >¢) Of the

absolute maximum and P({5min > ¢) of the absolute minimum of the
dimensionless variables

(29

Y2 Yo
omax = e :u,b’+a1ﬂu2, ;Zmin = —2mn _ Uﬂ—alﬂuz (25)
%y2 Oy

where the random variable u has Rayleigh distribution, are given by:

P2 > )= Tal0),
if g>0 f,(&)  if (<B/(Gy)), (26)
' P(?Zmin >§):{ ° . / “
0 it ¢>p/(4la)),
() if {<p/@len),
) P(?zmax >§)={ ° ) @l
if <0 0 if &>pB/(4lo), (27)
P(?Zmin >§)= fa(;)v

wherethefunctions f, and f,, arerespectively:

fal¢)= exp{— (1- - daftip ) | (wf)} 28)
0c) - o) (- A Aalc 17 | )
- exp{— [1+ WJZ / (saf)}

(the parameters o4, o, and S are defined by Eq. 13).

The minimum probability that the condition (24) is satisfied has
expression as the following

1
P = exp{— —8(a1—a2)2 } . (30)
The probability P, may be interpreted as the fraction of the
realizations of the non-linear process  in which condition (24) is
not verified. Let observe that for |o — arp| < .135 the probability Py is
close to 1/1000. Fig. 4 shows the probabilities of exceedance
P({omex > ¢) of the absolute maximum and P({5, >¢) of the
absolute minimum for fixed values of ¢ (and for |on =oq).
Observe that for ¢4 approaching zero both the probabilities of

exceedance reduce themselves to the Rayleigh distribution. For
og #0 the two distributions are different: in particular for a fixed

threshold of the probability of exceedance, if ¢4 >0 the absolute

(29)
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Fig. 2 The probability density functions fg“z (Eq. 14), for fixed values

of oy (it has been assumed o, = —a;). The dashed lineisthe
Gaussian distribution, obtained for ¢4 =0.
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Fig. 3 The probability of exceedance P({,,, >¢) of the absolute
maximum (Eqg. 22), for fixed | & |. The probability P({,,, >¢) is
equal to the Rayleigh distribution for & =0.

maximum is greater than the absolute minimum [and therefore each
redization of the process is a sequence of waves which have crest
amplitude (absolute maximum) greater than the trough amplitude
(absolute minimum)]; if o4 <0 the absolute minimum is greater than

the absolute maximum (and therefore each realization of the processis
a sequence of waves which have the trough amplitude greater than the
crest amplitude). It is also easy to verify that the distributions of Fig. 4
are not modified if o, rangesbetween — | | and |y |.

APPLICATIONS

Let us assume the reference frame (x,y,z) with the x-axis horizontal

(direction along which the waves attack), the y-axis horizontal and the
z-axis vertical with origin at the mean water level, as well as d the
bottom depth.

The narrow-band second-order Froude-Krylov force processes, both
for a vertical cylinder and for a horizontal submerged cylinder, are
derived by analytical integration of the narrow-band second-order
wave pressure (see Boccotti 2000).

The steepness £ (being e=ko, k the wave number and o the
standard deviation of the linear surface displacement) ranges typically
between 0.05 and 0.08.
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Fig. 4 Probabilities of exceedance for fixed values of | ¢ | (assuming
that |, = o |). (i) Positive o : continuous lines are the absolute
maximum distribution P(¢5,, >¢) , dashed lines are the absolute
minimum distribution P(¢, i, >¢) . (i) Negative o4 : continuous
linesarethe P({,, >¢) , dashed linesarethe P({y,,, >¢) -

The Narrow-Band Second-Order Froude-Krylov Forceon a
Vertical Cylinder

The sectional force

Let us consider an ideal water vertical cylinder with radius R (see
Fig. 5). The Froude-Krylov force (force for unitary length), at a fixed
level z, isgiven by

2r
F(2)=— I RAP(R 6,2) cod6)dé 31)
0

(we consider the variable transformation x=r cos@;y=rsiné - see
Fig. 5). By integrating we obtain the narrow-band horizontal
component of the Froude-Krylov force

cosh[k(z+d)]

Fo(2)=—pg 2rRaN(R=] Lt o

sn(wt+¢)-2709g -

(32
3cosh[2k(z+d )] —sinh?(kd)

4sinh®(kd) cosh(kd)
that belongs to the symmetric family w4 with parameter

-kRa%J;(2kR)

sin[2(wt + ¢)],

__ kR 3cosh[2k(z+d )] — sinh? (kd)
[91(KR)|  2sinh3(kd) cosh[k(z+d)]
where J;(x) isthe Bessel function of the first kind.

(33

Thetotal force
Thetotal force, which is defined as

0

o= [F@ez, (34
~h
belongsto the family y; (Eg. 1) too, with parameter
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Fig. 5 Froude-Krylov force on avertical cylinder: the reference frame.

__ 3(2kR) 3sinh(2kd) - 2kdsinh?(kd)
|3(kR)| 4sinh*(kd) '

In Fig. 6 the parameter J/¢ as function of kR is shown, for fixed
values of kd . Let us note that the parameter ¢ decreases as the depth
increases; it is also small: for kd >1.5 we have |J |< 0.5¢ (that is
| & |< 0.025+0.04).

Therefore the second-order Froude-Krylov force on a vertical cylinder
for a narrow-band spectrum, is a symmetric quasi-Gaussian process,
as a consequence the probabilities of exceedance of the absolute
maximum and of the absolute minimum are very close to the Rayleigh
distribution (compare to Fig. 3).

(39

The Narrow-Band Second-Order Froude-Krylov Force on a
Horizontal Submerged Cylinder

Let us consider an ideal water-horizontal cylinder with radius R
and centre at the level z=-h. The Froude-Krylov force components
(forces for unitary length) are respectively

2 2
Fye :—J'RAp(R,H)cos(H)dH, F, :—IRAp(Re)sn(a)da
0 0
where (r,0) define polar co-ordinates (x=rcosf , z=-h+rsné
-seeFig. 7).

(36)

The horizontal component F
From Eq. 36, after analytical integration, we obtain the narrow-band
second-order horizontal component F,

R2g.cosnik(d )]

- ; _ 2,
Fx = —park cosh(kd) sin(wt+ ¢) — pg 27kRa
(37
R 3.co§h[2k(d - . J1(2kR) Sn[2(wt+ g)] .
4sinh®(kd) cosh(kd)  4sinh(kd) cosh(kd)

It is easy to verify that the process force F, (Eq. 37) belongs to the
stochagtic family w4 (EqQ. 1), with parameter

3cosh[2k(d —h)]  J;(2kR)
2
_ sinh?(kd ) _ kR (39)
cosh[k(d — h)] sinh(kd)
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Fig. 6 Froude-Krylov force on avertica cylinder: the parameter 6/¢
asfunction of kR, for fixed valuesof kd .

Fig. 7 Froude-Krylov force on a horizontal submerged cylinder: the
reference frame.

In Fig. 8 the parameters /¢ asfunction of kR are shown, for fixed
values of h/d and kd. Let us note that for fixed radius R the
parameter § decreases as the depth d increases. The non-linear
effects are weak (the parameter | § | is smaller than 0.05), so that the
process F, (Eq. 37) may be considered symmetric quasi-Gaussian

and the probabilities of exceedance of the absolute maximum and of
the absolute minimum (Eq. 22) are very close to the Rayleigh
distribution (Fig. 3).

The vertical component F,

The narrow-band vertical component F, has the following expression

»_ sinh[k(d - h)]

a cos(wt + ¢)— pg 27kRa® -
coshkd) s(wt +¢)— pg2r

F; =—pgrkR

{

(39)
3ksinh[2k(d — h)]

4sinh®(kd ) cosh(kd)

_ sinh[2k(d - h)]
2sinh(2kd)

cos 2(wt + )] I1(2kR)}
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Fig. 8 Horizontal component of the Froude-Krylov force on a
horizontal submerged cylinder. The parameter 6/ ¢ as function of
kR, for fixed values of kd : (&) h/d =0.25; (b) h/d =0.50; (c)
h/d =0.75.

in which 1;(x) is the modified Bessel function of first kind. This
process belongs to the stochastic family w» (Eq. 2) with parameters

_coshk@d-hy| 3 +I1(2kR)
U snh(d) | gnh?(d) KR

(40)

=€cosh[k(d—h)]|: 3 I1(2kR)}.
sinh(kd) | sinh?(kd) kR

In this case the process is non-symmetric. In Fig. 9 the parameters oy
and a, as function of kd are showed, for fixed values of h/R and
kR. Let us note that for a fixed depth kd and a fixed kh, o
increases as the radius kR increases; for fixed kd and kR, o

decreases as kh increases (that is as the cylinder tends to approach the
bottom).
Furthermore, from Fig. 9 we observe that maximum values of o; and

o, are within 0.05 and 0.08 (being the maximum vaue of o /¢
and o,/ ¢ very closeto 1).
Finally, being o4 >0 (in the ranges of kd, kR and h/R values

considered in Fig. 9), the probabilities of exceedance of the positive
pesk (absolute maximum) of F, (Eqg. 39) and of the negative peak

(absolute minimum) of F, are different: in particular for a fixed
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Fig. 9 Vertica component of the Froude-Krylov force on a horizontal
submerged cylinder: the parameters oy / ¢ and o, / £ asfunction of
kd , for fixed valuesof h/R. (d) kR=.3; (b) kR=.5; (c) kR=1;
(d) kR=15; (e) kR=2.

threshold of probability of exceedance, the crest (positive peak) of the
wave force F, isgreater than the trough (negative peak). In words for

oy >0 each redlization of the process Froude-Krylov vertical force
F, is a sequence of waves, which have crest amplitude greater than
trough amplitude (Fig. 4).

COMPARISON WITH EXPERIMENTAL DATA

To check our results we have resorted to the file data of a small-
scale field experiment (Boccotti, 1996; Arena, 2002), which is
relevant to the forces on ahorizontal submerged cylinder.

Let us start with the horizontal component of the Froude-Krylov
force. We have estimated parameter 6 by means of Eq. 38 from the
data set of this experiment: the peak period (being necessary to obtain
wave number k), root mean sgquare surface displacement (being
necessary to obtain ¢), water depth d, submergence h of the
cylinder centre, radius R of the horizontal cylinder. We have
evaluated the value of § for each record of the experiment, and these
values prove to range between —0.05 and 0.01. In our analytica
approach we have shown that the probability of exceedance of the
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absolute maximum and the probability of exceedance of the absolute
minimum are equal to each other and are given by Eq. 22. With |J |
within 0.05 as in the experiment we are dealing with, Eq. 2 is very
close to the Rayleigh form (see Fig. 3).

Hence we can expect that both the probability of exceedance of
the absolute maximum and the probability of exceedance of the
absolute minimum of the horizontal Froude-Krylov force are very
close to each other and are very close to the Rayleigh form. This is
what actually occurs, and can be appreciated from Fig. 10 (data by
Boccotti, 2000).

Let us pass to the vertical component of the Froude-Krylov force. We
have estimated the pair ¢4, o, for each record of the experiment by
means of Eq. 40. Parameter o4 proves to range between 0.011 and
0.027, and parameter «, between 0.011 and 0.041. For each pair
o, 0, we have obtained the probability of exceedance of the
absolute maximum and the probability of exceedance of the absolute
minimum by means of Eqg. 26. The two extreme probabilities of
exceedance for the set of pairs ¢, o, are shown in Fig. 11 (lines a
and b). [The upper panel is relevant to the absolute maximum and the
lower panel to the absolute minimum.] We see that the probability of
exceedance of the absolute maximum (positive pesk of F, ) is greater
than the probability of exceedance based on the Rayleigh form. On the
contrary, the probability of exceedance of the absolute minimum
(negative pesk of F,) is smaler than the probability of exceedance
based on the Rayleigh form. The data points for the probability of
exceedance are those of Boccotti (2000): they are relevant to the

whole set of record during the experiment, and they clearly confirm
the trend of our theoretical predictions.
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Fig. 11 The distributions of the pesaks of the vertical Froude-Krylov
force on a horizontal submerged cylinder: (i) positive (upward) peak;
(ii) negative (downward) peak. Continuous lines are the predictions
from Eq. 43: lines (a) are obtained for ¢ =0.011, lines (b) are

obtained for ¢4 =0.041, which are the minimum and the maximum o7

in the experimental range of kR, kh and kd , assuming £ =0.06
(the corresponding «, are equal to 0.011 and 0.041 respectively).
Points showed experimental data (from Boccotti, 2000).
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