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ABSTRACT 
 

The statistical properties of the second-order Froude-Krylov force on a cylinder (whether a vertical cylinder or a horizontal submerged 
cylinder), for narrow-band spectra, are investigated. For this purpose two families of stochastic processes are defined and for each family 
the probability density function and the probabilities of exceedance of the absolute maximum and of the absolute minimum are obtained. It 
is then proven that the above-mentioned Froude-Krylov force processes belong to these stochastic families.  
The predictions for the Froude-Krylov force on a horizontal submerged cylinder agree with the results of a small-scale field experiment. 
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INTRODUCTION 
 

The amplitude of the wave force on a large structure may be 
obtained as the product of the Froude-Krylov force (which is defined 
as the force on the equivalent water volume) and the diffraction 
coefficient of the wave force (Sarpkaya and Isaacson, 1981). 
Therefore it is helpful for the design of large offshore structures to 
investigate the properties of the Froude-Krylov force.  

According to the linear theory of wind-generated waves (Longuet-
Higgins, 1963; Phillips, 1967) the linear Froude-Krylov force, whether 
on a vertical cylinder or on a horizontal submerged cylinder, 
represents a random Gaussian process of time. Therefore both the 
absolute maximum and the absolute minimum of the linear Froude-
Krylov force have the same Rayleigh distribution, if the spectrum is 
very narrow (Longuet-Higgins, 1952).  
Boccotti (2000) has shown that, for large horizontal cylinders, the two 
random processes wave force on the solid cylinder, and Froude-Krylov 
wave force have nearly the same very narrow spectrum, the same non-
linearity effects, and the same statistical properties: equal distribution 
of the normalized crest-to-trough heights, distribution of the 
normalized absolute maximum and distribution of the normalized 
absolute minimum. This conclusion is based on the evidence of a 
small-scale field experiment which consisted in the real time 
comparison of the wave forces on a horizontal submerged cylinder and 
on an ideal equivalent water cylinder (see also Boccotti, 1996 and  
 
1 authors are in alphabetical order  

Arena, 2002). 
The statistics of non-linear wave forces was studied by Naess and 
Johnsen (1992), which proposed a numerical approach for calculating 
the probability density function of the second order hydrodynamic 
loads and response of compliant offshore structures.  

In this paper an analytical formulation is proposed for narrow-
band wind-generated wave processes (Tayfun, 1980), including the 
non-linear Froude-Krylov forces. In detail we define two families of 
non-linear stochastic processes 1ψ  and 2ψ : the first consisting of 

statistically symmetric processes, the second consisting of statistically 
non-symmetric processes. For each family of random processes we 
obtain the probability density function, the probability of exceedance 
of the absolute maximum and the probability of exceedance of the 
absolute minimum. For the family 1ψ  these properties depend upon 

one parameter δ , for the family 2ψ  they depend upon two 

parameters 1α  and 2α . 

We prove that the horizontal component of the narrow-band 
second-order Froude-Krylov force (whether on a vertical cylinder or 
on a horizontal submerged cylinder) represents a random process of 
time which belongs to the stochastic family 1ψ , and the expression of 

parameter δ  is derived for this process. We prove also that the 
vertical component of the narrow-band second-order Froude-Krylov 
force (on a horizontal submerged cylinder) represents a random 
process of time, which belongs to the stochastic family 2ψ  and the 

expressions of parameters 1α  and 2α  are obtained for this process. 

Finally, we show that the analytical predictions for the Froude-
Krylov force on a horizontal submerged cylinder agree with the 
conclusions of Boccotti (2000) based on experimental evidence.  
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STATISTICAL PROPERTIES OF TWO STOCHASTIC 
FAMILIES WITH NARROW-BAND SPECTRUM  

 

Let us define the two families of stochastic processes of time: 

])(2sin[)](sin[)( 2
111 tagtaft χχψ += , (1) 

])([sin])([cos)](cos[)( 22
2

22
222 tahtagtaft χχχψ ++= , (2) 

where a is a Rayleigh distributed random variable, 1f , 1g , 2f , 2g , 

2h  are parameters with some fixed values and where ϕχ += twt)( , 

with w  the angular frequency and ϕ  a random phase uniformly 

distributed in )2,0( π .  
 
The Probability Density Functions of the Stochastic Family 1ψ  

 

Let us consider the normalized random process  

1111 /)( ψσψψζ −=  (3) 

where 1ψ  and 
1ψσ  are, respectively, the mean value and the standard 

deviation of random process 1ψ . Defining the two Gaussian random 

processes of time 
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where σ  is the standard deviation of the linear process )](sin[ ta χ , 

the normalized process 1ζ  may be rewritten as  
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where 
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The third and fourth moments of the family 1ζ , are given respectively 

by: 
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The fact the third moment is zero, suggests that 1ζ  is a symmetric 

process. To show this symmetry the probability density function of 1ζ  

is derived. Firstly, by using Laplace transform technique, we evaluate 
the characteristic function of the process 1ζ , which is defined as the 

mean value of 1ζωie : 
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The probability density function of 1ζ , which is obtained by inverse 

Fourier transform of ζωie  (Eq. 9), is given by: 
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Note that this probability density function is symmetric with respect to 
0=ζ , which means that the random process 1ζ  is statistically 

symmetric. Note also that the probability density function 
1ζf  (Eq. 

10) of the normalized random variable 1ζ  approaches the probability 

density function of the normalized Gaussian variable, as δ  

approaches zero. Fig. 1 compares the 
1ζf  for two values of δ  and the 

probability density function of the normalized Gaussian random 
variable. 
 
The Probability Density Functions of the Stochastic Family 2ψ  

 

Let us consider the normalized random process  

2222 /)( ψσψψζ −=  (11) 

where 2ψ  and 
2ψσ  are, respectively, the mean value and the standard 

deviation of random process 2ψ . As function of the processes cZ  and 

sZ  (see Eq. 4), the process 2ζ  may be written as 
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The family 2ζ is generally non-symmetric and its statistical properties 

have been deeply investigated by Arena & Fedele (2002), that derived 
the analytical expression of the probability density function 

2ζf  

(obtained by applying the inverse Fourier transform to the 

characteristic function 2ωζie ). It is given by: 
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Let us observe that if the parameters 21 ,αα  approach zero, the non-

linearity vanishes and the probability density function of 2ζ  (Eq. 14) 

tends to the Gaussian distribution. Fig. 2 shows the probability density 
function 

2ζf  (Eq. 14), for fixed values of ( 21,αα ). If the parameters 

21,αα  approach zero, the non-linear effects vanish, and each process 

ζ  belonging to the stochastic family (2), has to converge in 
probability to a Gaussian process.  
 

Fig. 1 Comparison between the probability density functions 
1ζf  (Eq. 

10), for fixed values of δ , and the normalized Gaussian (dotted line). 
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The Probabilities of Exceedance of the Absolute Maximum and of 
the Absolute Minimum of the Stochastic Family 1ψ  

 

Being the family 1ψ  (Eq. 1) symmetric, the distribution of the 

absolute maximum is equal to the distribution of the absolute 
minimum. Therefore we derive only the probability of exceedance of 
the absolute maximum.  
If we rewrite the normalized process 1ζ  (Eq. 5) as 
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the first derivative χζ /dd 1  vanishes if 
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where  
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In the following we analyze the roots of Eq. 16 in the domain of the 
parameter µ . If 0→µ  the effects of non-linearity are negligible and 

Eq. 16 reduces itself to 0cos =χ : the abscissa 2/πχ =  of the 

maximum value is equal to the maximum abscissa for the linear process 
)sin()/(1 χσνζ aL = . If ∞→µ  the non-linearity is predominant and 

Eq. 16 reduces itself to 2/1cos2 =χ : the abscissa of the maximum 

value is 4/πχ = . For finite µ , the abscissa of the maximum is within 

4/π  and 2/π  and Eq. 16 is satisfied if  
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If we assume weak non-linear effects (that is 1<<µ ), for a fixed 

value of σ/a , Eq. 18 may be expanded in Taylor series as  

2
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Substitution of expressions 19 in Eq. 15, after some algebra, by 
retaining only the lower order terms, gives us the approximate 
expression for the maximum  
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Successive approximations procedure yields the following expressions 
for 0u  such that Eq. 20 is satisfied  
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Finally, having the variable u the Rayleigh distribution [that is 

)2/exp()( 2zzuP −=≥ ], the probability of exceedance for the 
absolute maximum has expression 
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This probability of exceedance, for fixed values of δ , is shown in Fig. 
3. Let us note that the deviation from the Rayleigh distribution is weak 
for 05.0|| <δ . 
 
The Probabilities of Exceedance of the Absolute Maximum and of 
the Absolute Minimum of the Stochastic Family 2ψ  

 

Supposing that 02 >f , from Eq. 2 we obtain the amplitudes of the 

absolute maximum and of the absolute minimum (in absolute value), 
which are given respectively by: 
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Arena and Fedele (2002) showed that if the condition  
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where the random variable u has Rayleigh distribution, are given by: 
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if 01 <α   
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where the functions af  and bf  are respectively: 
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(the parameters 1α , 2α  and β  are defined by Eq. 13).  

The minimum probability that the condition (24) is satisfied has 
expression as the following  
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The probability lP  may be interpreted as the fraction of the 

realizations of the non-linear process ψ  in which condition (24) is 

not verified. Let observe that for ≤− 21 αα .135 the probability lP  is 

close to 1/1000. Fig. 4 shows the probabilities of exceedance 
)( max2 ζζ >P  of the absolute maximum and )( min2 ζζ >P  of the 

absolute minimum for fixed values of 1α  (and for 12 || αα = ). 

Observe that for 1α  approaching zero both the probabilities of 

exceedance reduce themselves to the Rayleigh distribution. For 
01 ≠α  the two distributions are different: in particular for a fixed 

threshold of the probability of exceedance, if 01 >α  the absolute 
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Fig. 2 The probability density functions 
2ζf  (Eq. 14), for fixed values 

of 1α  (it has been assumed 12 αα −= ). The dashed line is the 

Gaussian distribution, obtained for 1α =0. 
 

Fig. 3 The probability of exceedance )( max1 ζζ >P  of the absolute 

maximum (Eq. 22), for fixed | δ |. The probability )( max1 ζζ >P  is 

equal to the Rayleigh distribution for δ =0. 
 

maximum is greater than the absolute minimum [and therefore each 
realization of the process is a sequence of waves which have crest 
amplitude (absolute maximum) greater than the trough amplitude 
(absolute minimum)]; if 01 <α  the absolute minimum is greater than 

the absolute maximum (and therefore each realization of the process is 
a sequence of waves which have the trough amplitude greater than the 
crest amplitude). It is also easy to verify that the distributions of Fig. 4 
are not modified if 2α  ranges between || 1α−  and || 1α .  

 
APPLICATIONS 

 

Let us assume the reference frame ),,( zyx  with the x-axis horizontal 
(direction along which the waves attack), the y-axis horizontal and the 
z-axis vertical with origin at the mean water level, as well as d the 
bottom depth. 
The narrow-band second-order Froude-Krylov force processes, both 
for a vertical cylinder and for a horizontal submerged cylinder, are 
derived by analytical integration of the narrow-band second-order 
wave pressure (see Boccotti 2000). 
The steepness ε  (being σε k= , k  the wave number and σ  the 
standard deviation of the linear surface displacement) ranges typically 
between 0.05 and 0.08.  

Fig. 4 Probabilities of exceedance for fixed values of | 1α | (assuming 

that |||| 12 αα = ). (i) Positive 1α : continuous lines are the absolute 

maximum distribution )( max2 ζζ >P , dashed lines are the absolute 

minimum distribution )( min2 ζζ >P .  (ii) Negative 1α : continuous 

lines are the )( min2 ζζ >P , dashed lines are the )( max2 ζζ >P . 

 
The Narrow-Band Second-Order Froude-Krylov Force on a 
Vertical Cylinder  

 

The sectional force 
Let us consider an ideal water vertical cylinder with radius R (see 

Fig. 5). The Froude-Krylov force (force for unitary length), at a fixed 
level z, is given by   
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(we consider the variable transformation θθ sin;cos ryrx ==  - see 

Fig. 5). By integrating we obtain the narrow-band horizontal 
component of the Froude-Krylov force 
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that belongs to the symmetric family 1ψ  with parameter 
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where )(1 xJ  is the Bessel function of the first kind.  

 
The total force 

The total force, which is defined as  

∫
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belongs to the family 1ψ  (Eq. 1) too, with parameter  
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Fig. 5 Froude-Krylov force on a vertical cylinder: the reference frame. 
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In Fig. 6 the parameter εδ /  as function of kR  is shown, for fixed 
values of kd . Let us note that the parameter δ  decreases as the depth 
increases; it is also small: for 5.1>kd  we have εδ 5.0|| <  (that is 

04.0025.0|| ÷<δ ).  
Therefore the second-order Froude-Krylov force on a vertical cylinder 
for a narrow-band spectrum, is a symmetric quasi-Gaussian process; 
as a consequence the probabilities of exceedance of the absolute 
maximum and of the absolute minimum are very close to the Rayleigh 
distribution (compare to Fig. 3). 
 
The Narrow-Band Second-Order Froude-Krylov Force on a 
Horizontal Submerged Cylinder  

 

Let us consider an ideal water-horizontal cylinder with radius R 
and centre at the level hz −= . The Froude-Krylov force components 
(forces for unitary length) are respectively  
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where ( θ,r ) define polar co-ordinates ( θcosrx = , θsinrhz +−=  

- see Fig. 7).  
 

The horizontal component xF  

From Eq. 36, after analytical integration, we obtain the narrow-band 

second-order horizontal component xF   
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It is easy to verify that the process force xF  (Eq. 37) belongs to the 

stochastic family 1ψ  (Eq. 1), with parameter 
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Fig. 6 Froude-Krylov force on a vertical cylinder: the parameter εδ /  
as function of kR , for fixed values of kd . 

 

Fig. 7 Froude-Krylov force on a horizontal submerged cylinder: the 
reference frame. 
 
In Fig. 8 the parameters εδ /  as function of kR  are shown, for fixed 
values of dh /  and kd . Let us note that for fixed radius R  the 
parameter δ  decreases as the depth d  increases. The non-linear 
effects are weak (the parameter | δ | is smaller than 0.05), so that the 

process xF  (Eq. 37) may be considered symmetric quasi-Gaussian 

and the probabilities of exceedance of the absolute maximum and of 
the absolute minimum (Eq. 22) are very close to the Rayleigh 
distribution (Fig. 3).  
 

The vertical component zF  

The narrow-band vertical component zF  has the following expression  
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Fig. 8 Horizontal component of the Froude-Krylov force on a 
horizontal submerged cylinder. The parameter εδ /  as function of 
kR , for fixed values of kd : (a) =dh / 0.25; (b) =dh / 0.50; (c) 

=dh / 0.75. 
 

in which )(1 xI  is the modified Bessel function of first kind. This 

process belongs to the stochastic family 2ψ  (Eq. 2) with parameters 
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In this case the process is non-symmetric. In Fig. 9 the parameters 1α  

and 2α  as function of kd  are showed, for fixed values of Rh /  and 

kR . Let us note that for a fixed depth kd  and a fixed kh , 1α  

increases as the radius kR  increases; for fixed kd  and kR , 1α  

decreases as kh  increases (that is as the cylinder tends to approach the 
bottom).  
Furthermore, from Fig. 9 we observe that maximum values of 1α  and 

2α  are within 05.0  and 08.0  (being the maximum value of εα /1  

and εα /2  very close to 1). 

Finally, being 01 >α  (in the ranges of kd, kR and h/R values 

considered in Fig. 9), the probabilities of exceedance of the positive 
peak (absolute maximum) of zF  (Eq. 39) and of the negative peak 

(absolute minimum) of zF  are different: in particular for a fixed  
 

Fig. 9 Vertical component of the Froude-Krylov force on a horizontal 
submerged cylinder: the parameters εα /1  and εα /2  as function of 

kd , for fixed values of Rh / . (a) 3.=kR ;  (b) 5.=kR ; (c) 1=kR ; 
(d) 5.1=kR ; (e) 2=kR . 
 
threshold of probability of exceedance, the crest (positive peak) of the 
wave force zF  is greater than the trough (negative peak). In words for 

01 >α  each realization of the process Froude-Krylov vertical force 

zF  is a sequence of waves, which have crest amplitude greater than 

trough amplitude (Fig. 4). 
 
COMPARISON WITH EXPERIMENTAL DATA  
 

To check our results we have resorted to the file data of a small-
scale field experiment (Boccotti, 1996; Arena, 2002), which is 
relevant to the forces on a horizontal submerged cylinder.  

Let us start with the horizontal component of the Froude-Krylov 
force. We have estimated parameter δ  by means of Eq. 38 from the 
data set of this experiment: the peak period (being necessary to obtain 
wave number k ), root mean square surface displacement (being 
necessary to obtain ε ), water depth d , submergence h  of the 
cylinder centre, radius R  of the horizontal cylinder. We have 
evaluated the value of δ  for each record of the experiment, and these 
values prove to range between –0.05 and 0.01. In our analytical 
approach we have shown that the probability of exceedance of the 
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absolute maximum and the probability of exceedance of the absolute 
minimum are equal to each other and are given by Eq. 22. With | δ | 
within 0.05 as in the experiment we are dealing with, Eq. 2 is very 
close to the Rayleigh form (see Fig. 3).  

Hence we can expect that both the probability of exceedance of 
the absolute maximum and the probability of exceedance of the 
absolute minimum of the horizontal Froude-Krylov force are very 
close to each other and are very close to the Rayleigh form. This is 
what actually occurs, and can be appreciated from Fig. 10 (data by 
Boccotti, 2000).  
Let us pass to the vertical component of the Froude-Krylov force. We 
have estimated the pair 1α , 2α  for each record of the experiment by 

means of Eq. 40. Parameter 1α  proves to range between 0.011 and 

0.027, and parameter 2α  between 0.011 and 0.041. For each pair 

1α , 2α  we have obtained the probability of exceedance of the 

absolute maximum and the probability of exceedance of the absolute 
minimum by means of Eq. 26. The two extreme probabilities of 
exceedance for the set of pairs 1α , 2α  are shown in Fig. 11 (lines a 

and b). [The upper panel is relevant to the absolute maximum and the 
lower panel to the absolute minimum.] We see that the probability of 
exceedance of the absolute maximum (positive peak of zF ) is greater 

than the probability of exceedance based on the Rayleigh form. On the 
contrary, the probability of exceedance of the absolute minimum 
(negative peak of zF ) is smaller than the probability of exceedance 

based on the Rayleigh form. The data points for the probability of 
exceedance are those of Boccotti (2000): they are relevant to the 
whole set of record during the experiment, and they clearly confirm 
the trend of our theoretical predictions.  
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Fig. 11 The distributions of the peaks of the vertical Froude-Krylov 
force on a horizontal submerged cylinder: (i) positive (upward) peak; 
(ii) negative (downward) peak. Continuous lines are the predictions 
from Eq. 43: lines (a) are obtained for 1α =0.011, lines (b) are 

obtained for 1α =0.041, which are the minimum and the maximum 1α  

in the experimental range of kR , kh  and kd , assuming 06.0=ε  
(the corresponding 2α  are equal to 0.011 and 0.041 respectively). 

Points showed experimental data (from Boccotti, 2000). 

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5

Pr
ob

ab
ili

ty
 o

f 
ex

ce
ed

an
ce

ζ

(i) distribution of positive peaks

(ii) distribution of negative peaks

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5

Rayleigh

(a)
(b)

)( max2 ζζ >P

ζ

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5

Rayleigh

(a)
(b)

ζ

)( min2 ζζ >P


